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The work was done in Bergakademie Freiberg. The research was started in the frame of the “ZORRO” project.
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Sticky Note
The research contained two parts: finding the proper measurement technique and studying the LeTID phenomena using this technique.
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Light and elevated Temperature Induced 
Degradation[1, 2, 3] : (LeTID)[3]

[1] K. Ramspeck, et al., 2012
[2] F. Fertig, et al., 2015
[3] F. Kersten, et al., 2015

[3]

EL and module power measurement (STC) sequence
showing the degradation–regeneration cycle and
the time-resolved contribution of single cells. “CW”
is for a Calendar Week.

Teimuraz Mtchedlidze
Sticky Note
The story of LeTID started with these three publications. This image from the work of Kersten et al. best represents the phenomena, the short name LeTID comes from that publication. This study was performed in IAP,  Bergakademie Freiberg.
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Light and elevated Temperature Induced 
Degradation (LeTID) 

• Is LeTID still a problem for the PV industry?

• Has the role of hydrogen in LeTID been proven?

• Do other defects/impurities, or layers play a role?    

• Can dopant-hydrogen complexes be a cause of LetiD?

• Is the LeTID mechanism understood?

[4] D. Chen, et al., 2021
[5] L. Ning, et al., 2022
[6] T.O. Abdul Fattah, et al., 2023
[7] J. Coutinho, et al., 2024

- Almost not[4,5].

- Almost yes [4].

- Maybe [5].

- Maybe[6, 7].

- Not [4,5,7].

Teimuraz Mtchedlidze
Sticky Note
Several questions can be answered based on the latest reviews and other publications about LeTID. From these answers, one can see that the mechanism of LeTID is still unclear.We think that local investigation methods such as low-temperature PL and DLTS can shed some light on the problem.
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Local PL and DLTS measurements on the cells 

[8] T. Mchedlidze, et al., 2019

[8] [9]

[9] S. Johnston, et al., 2022

Teimuraz Mtchedlidze
Sticky Note
A number of publications using local methods is sparse. In the previous publication [8], a part of the solar cell was degraded using CID and after RT PL imaging, mesas were fabricated in various parts of the cell. Interestingly it appeared that degradation level was well correlated with local boron concentrations. In DLTS spectra measured from the mesas a variety of signals were detected, most of them, if not all, originating from extended defects.PL images of the cells within the LeTID-degraded module were studied recently [9]. Signals from extended defects were detected. The signatures of the defects depended on locations and were not the same in degraded and regenerated states.
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Experiments with “multisamples”

100 150 200 250 300

0.0

0.5

1.0

1.5

2.0

D
C

/C
 x

 1
0

-4

T(K)

Initial PV cell

RW=60 s-1

 mesa 1

 mesa 2

 mesa 3

100 150 200 250 300

0.0

0.5

1.0

1.5

2.0

D
C

/C
 x

 1
0

-4

T(K)

Degraded PV cell

RW=60 s-1

 mesa 1

 mesa 2

 mesa 3

100 150 200 250 300

0.0

0.5

1.0

1.5

2.0

D
C

/C
 x

 1
0

-4

T(K)

Regenerated PV cell

RW=60 s-1

 mesa 1

 mesa 2

 mesa 3

DLTS: similar locations 
cutout from „sister“ 
wafers of PV-cell in: 

Initial state:

Degraded state:

Regenerated state:

1.02 1.04 1.06 1.08 1.10 1.12 1.14

0

2

4

6

P
L

 i
n

te
n

s
it
y
 (

c
o

u
n

ts
/1

0
0

0
)

Photon energy (eV))

Initial stage, T=11.3 K

PL; l=532 nm, P=5 mw;

Positions:

 1

 2

 3

 4

 5

1220 1200 1180 1160 1140 1120 1100

Wavelength (nm)

PL: different locations 
on the same PV-cell in 

initial state: 

Near BG spectra

Details near BE, FE

1.08 1.09 1.10 1.11 1.12

0

2

4

6

P
L

 i
n

te
n

s
it
y
 (

c
o

u
n

ts
/1

0
0

0
)

Photon energy (eV))

Initial stage, T=11.3 K

PL; l=532 nm, P=5 mw;

                       Positions:

                         1

                         2

                         3

                         4

                         5

1140 1130 1120 1110

Wavelength (nm)

Teimuraz Mtchedlidze
Sticky Note
At the beginning of the present study, we analyzed DLTS signals from mesas fabricated at similar locations of sister wafers. Here are presented DLTS spectra. Some similarities can be followed but still, it was very difficult to interpret the spectra and find strong correlations. PL signals even from the mesas fabricated at the same PV-cell showed differences.
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• PERC solar cells, Cz-Si, standard PERC fabrication
procedure [2], B-doped, NB = 1.1 ∙ 1016 cm-3;

• Mesa-diodes prepared from the PERC cells using
chemical etching process;

• Three LeTID states: initial (I), degraded (D),
regenerated (R);

• “Multisamples”: mesa diodes on samples cutout from
similar locations of sister wafers for I, D, and R states;
D and R were processed on complete solar cells by
CID procedure;

• “Monosample”: the same sample (mesa diode) for I,
D, and R stages obtained by on-stage CVID procedure,
degradation (50 min) and regeneration (6 h).

[*] Samples were fabricated in the frame of the “ZORRO”           
project (contract no. 03EE1051D). 
[**] https://hjtpv.com/perc-technology-and-solar-panels/

Mesa samples from solar cells[*]

Wall of MesaWall of Mesa

[**]

Teimuraz Mtchedlidze
Sticky Note
Sample details.



Teimuraz Mchedlidze, et al.               GADEST 2024 10 September 2024 TuM1:O15                       Slide 8

DLTS setup[10]

Keysight
33500B

Lakeshore
336

VP, tP, tw

To
trigger Sample Thermalsensor

[10] T. Mchedlidze, 2023

Teimuraz Mtchedlidze
Sticky Note
A DLTS setup used in the research was built on the base of MFIA from Zurich instruments (see [10] for more details).
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EL(        ) and PL(         ) setup

6 ms

6 ms

EL Pulse

VPKeysight
33500B

Teimuraz Mtchedlidze
Sticky Note
In luminescence measurements, we used a similar detection scheme (lock-in +PMT) for electro (EL) and light (PL) excitation. PL was excited with a CW laser/chopper scheme (at 532 nm wavelength). For EL we used Keysight 33500B pulse generator (a pulse sequence is presented on the slide).
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On-stage LeTID of mesa-diodes

Can local methods for defect investigation be applied for LeTID
investigations in the cells and, if “yes”, how?

For LT-EL-PLFor DLTS

Study of the same samples mounted on the measuring setup in initial, 
degraded and regenerated states.

Teimuraz Mtchedlidze
Sticky Note
To follow the LeTID degradation-regeneration sequence and eradicate the influence of location we decided to make on-stage degradation of fabricated mesas. Images of the samples for on-stage LeTID studies using DLTS and LT-EL-PL methods are shown. Mesa diode emitters are bonded to the electric contacts with thin Au wire, and the anode (back contact of the cell) is contacted using Ag-powder containing glue. The green spot in the left image indicates the focus point of the PL-EL system. PL reference sample "R" is low B-doped FZ-Si.
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On-stage LeTID of mesa-diodes:

Degradation procedure

Initial
Degraded

Regenerated

• Current induced degradation (CID) at elevated
temperatures is frequently used to model LeTID[4].

• However, due to leakage current at the perimeter of
mesa diodes, especially for small area mesas, it is
preferable to use constant voltage induced
degradation (CVID).

• CID  CVID was confirmed.

• From the experimental LeTID curve:
➢ t(degradation) = 50 min;
➢ t(regeneration) = +6 hours.

[4] D. Chen, et al., 2021

Area of cleaved out cell 1 cm2

VF, const = 470 mV, T = 369 K 

Teimuraz Mtchedlidze
Sticky Note
We used constant voltage-induced degradation (CVID) at elevated temperatures to avoid the influence of leakage paths related to the walls of the mesa diodes. The parameters of the CVID at a relatively large sample were used for the degradation-regeneration procedure of small-area mesa diodes.
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On-stage LeTID of mesa-diodes: 

dark IV
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Sticky Note
We checked dark IV curves in initial, degraded, and regenerated states of mesa-diodes and they resembled those for the CID of complete PV cells.
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On-stage LeTID of mesa-diodes: 

CV measurements
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Sticky Note
We also checked CV curves and detected a small decrease in dopant concentration in the degraded state. The IV and CV results suggested that we indeed had a degradation-regeneration process in our mesa-diodes.
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On-stage LeTID of mesa-diodes: DLTS
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Sticky Note
DLTS spectra for different states in different mesas are shown here. This looks like our results for sister wafers. However, if we group the spectra according to the LeTID states the picture appears more regular (next slide).
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On-stage LeTID of mesa-diodes: DLTS
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[11] M. K. Juhl, et al., 2023
[12] J. T. Ryan, et al., 2015
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Teimuraz Mtchedlidze
Sticky Note
In the degraded state, the peaks appear at higher temperatures. We can follow the standard DLTS procedures, and make Arrhenius plots from rate-window dependent spectra. This will result in the scatter of energies and pre-exponential factors for the three states in various mesas. These results suggest that the defects become more electrically active in the degraded state and lose the gained activity in the regenerated state. From previous publications [11, 12] we know that the real parameters of the traps, like level position and CCS, cannot be determined from the DLTS measurements. Moreover, the peaks originate from localized states of extended defects (see next slide).
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On-stage LeTID of mesa-diodes: DLTS
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• Exact nature of the detected extended defects is not clear, however dislocations [14, 15] should be
considered as candidates.

• Due to substantial leakage and overlap with majority carrier trap peaks we did not succeed
detecting minority carriers in mesa diodes.

[13] M. Seibt, et al., 2009
[14] L. Wang, et al., 2023
[15] H.T. Nguen, et al., 2016
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This was proved by the dependencies of signal amplitudes of the peaks on the filling pulse duration. All peaks increase in amplitude until very long filling pulses. A similar behavior was described and explained in the works of Shcroeter and Seibt [13]. The difference between point-like and extended defects in tp dependence is well seen in the right-most image: for Au single donor in Si, the amplitude saturates very fast with tp. For dislocations the behavior is different. The example of behavior for our samples in various states is also shown here. We should note that detection of the extended defects with high sensitivity was possible due to our MFIA-DLTS setup (see [10] for more information).
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On-stage LeTID of mesa-diodes: luminescence
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[16] M. Tajima, et al., 2011
[17] H.T. Wu, et al., 2018
[18] K. Peh, et al., 2023
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Teimuraz Mtchedlidze
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We measured low-temperature luminescence in three modes: PL, EL under forward bias, and EL under reverse bias. PL is similar to those previously reported from near junction regions of Si pn-junctions (see e.g. [16-18]).
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[19]

[19] R.R. Parsons, 1978
[20] J. Wagner, 1984
[16] M. Tajima, et al., 2011
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On-stage LeTID of mesa-diodes: luminescence

EL, Forward bias, VPULSE=0.55 V, TMEAS=10 K
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Sticky Note
EL under forward bias is similar to PL reported for heavily phosphorus-doped Si samples [16, 19, 20]  and mainly presents luminescence from the emitter of the cell (see slide 20 and Appendix 1 for more explanations).
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[21] H.T. Nguyen, et al., 2015
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[21]

EL, Reverse bias, VPULSE=-12 V, TMEAS=10 K
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Sticky Note
EL under reverse bias resembles PL spectra under excitation with infrared light [21] and mainly originates from the bulk of the cell (see slide 20 and Appendix 1 for more explanations).
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Sticky Note
We modeled the radiative recombination rate under EL conditions using TCAD simulations. The simulations also show that forward bias mainly causes recombination in emitter volume, while under reverse bias the main part of recombinations occurs in the bulk of the cell (see Appendixes 1 for more information about performed TCAD simulations).
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➢ Changes in recombination in emitter
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of overall intensity for the degraded
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On-stage LeTID of mesa-diodes: luminescence

Results
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Here are the main results from luminescence measurements. We detected a decrease of overall intensity in the degraded state, and some noticeable changes in the shape of the luminescence spectra. Namely the changes in the shape of the EL related to the emitter for the degraded state and a decrease (disappearance) of the bound-exciton-related peak in PL (see Appendices 3 and 4 for more details). These changes suggest deactivation for part of the acceptors in the emitter and near-junction region.
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Short summary of observations:

Possible (additional?) mechanism of LeTID:

Discussion

[22] M. Matsubara, et al., 2010
[23] J. Pankove, 1991
[7] J. Coutinho, et al., 2024

Method Detected properties
Initial & 

Regenerated
Degraded

Probable 
reason

DLTS Electrical activity of extended defects Low High Hydrogen

CV Concentration of active boron near to the junction Higher Lower BH2

PL & 
EL

Overal intensity Higher Lower Ext. defects

Intensity of boron related peaks High Low BH2

Initial [22,23]

H

H
H

H

H

H

H H H

Hn++

p

Degraded [22,23,7]

PHxn+

p-

BHx

BHx
BHx

BHx

Regenerated [22,23]

H

H
H

H H

H H

Hn++

p
BHx

Teimuraz Mtchedlidze
Sticky Note
The electrical activity of extended defects increases In the degraded state (DLTS). At the same time, a small decrease in active boron atom concentration was detected from CV measurements.The overall intensity of the luminescence decreases for the degraded state (EL, PL) as well. Changes in the shape of the spectra suggest a decrease in active boron concentrations in the degraded state.For the possible (additional?) mechanism of LeTID we can propose such a scheme:Extended defects passivated during the firing process loose hydrogen atoms at LeTID conditions [22] and became more active [23]. Hydrogen atoms passivate dopants [7]. Regeneration can be a result of some structural changes in dopant-hydrogen complexes and/or in extended defects, bringing the system close to the initial state.
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New methods proposed/used for LeTID study:

• On-stage degradation and regeneration of mesa PV cells for PL, EL and DLTS study.

• Low temperature (10 K) EL study under forward and reverse bias.

• Enhanced detection/characterization of extended defects by DLTS using MFIA-DLTS setup.

New results:

• We observed significant and reversible changes in local luminescence and electrical properties of
PV cell during on-stage LeTID process.

• The changes can be attributed to interaction between extended defects, dopants and hydrogen
and can imply a mechanism (additional?) of LeTID.

Summary
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Appendix 1: TCAD modelling

Software TCAD Sentaurus O-2018.06-SP2

Materials Silicon, Oxides and Aluminum

Domain Smallest symmetrical element

Meshing ⦁ “Box” method volume μm2 ⟶ PERC: 1.192∙ 105 MESA: 1.193∙ 105

⦁ Total number of elements ⟶ PERC: 46,399       MESA: 71,986

Generation & V-range 1.5 ∙ 1019
1

cm3∙s
& V [mV] ⋲ [0; 690]

Surface 
recombination

On all intermediate areas, not on edge surfaces

Physical models ⦁ Intrinsic carrier density model: Schenk bandgap narrowing model and 
calculation by Altermatt et al. [2;3]
⦁ Charge carrier density mobility: Klaassen model [4;5]

Solver Pardiso: Gaussian elimination for systems of equations

Teimuraz Mtchedlidze
Sticky Note
Parameters and details of TCAD modeling.
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Appendix 1: TCAD modelling

Excess Charge carrier density

Teimuraz Mtchedlidze
Sticky Note
Parameters and details of TCAD modeling.
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Appendix 1: TCAD modelling

Forward bias: 0->690 mV
Operating: 550 mV

Reverse bias: 0-> -12 V
Operating: -12 V

Solving of equations
Poisson, 

Electron, Hole
Solver Pardiso

T [K] 298.15
wafer Boron doped

p_0 [1/cm3] 9.74E+15
Phosphoros concentration 
at emitter described by 
Gauss -> peak value [cm-3]

1.65E+20

wafer resistance 
[Ohm*cm] at 300 K 

1.5

Surface recombination 
velocity of 1. holes and 2. 
electrons (fcont1ox?)

1E7; 1E7

Meshing with.. Box Method

Teimuraz Mtchedlidze
Sticky Note
Parameters and details of TCAD modeling.
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Appendix 2: Luminescence, fitting
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Sticky Note
Examples of fitting for PL and EL spectra curves and assignment to the previously reported luminescence peaks.
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Appendix 3: Change in DA recombination in Emitter

HL, DA

LL (IB(TO))

Teimuraz Mtchedlidze
Sticky Note
EL luminescence under forward bias in I, D, and R stages and the energy scheme for the related transitions from [19]. A decrease in active boron concentration will cause suppression of LL and the related peaks.
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Appendix 4: Luminescence, power dependence
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Changes in the PL and EL spectra under variation of excitation power.An increase in excitation power leads to the relative suppression of B-related peaks. A decrease in active boron concentration will show similar trends.




